作者单位
摘要
1 中国电子科技集团有限公司第四十六研究所,天津 300220
2 深圳大学物理与光电工程学院,深圳 518060
本文采用物理气相传输法对不同衬底温度和温差下制备的氮化铝(AlN)晶体形貌进行研究,研究结果表明AlN晶体生长受到AlN晶面表面能、Al基元平均动能和AlN晶体表面极性的共同影响。当温差为60 ℃时, AlN晶体(0001)面生长速率小于(10-10)面,AlN以带状形式生长。将该工艺应用于AlN同质生长中,研究结果表明:温差为60 ℃时AlN晶体(0001)面呈现畴生长模式,该晶体质量最差;温差为35 ℃时AlN晶体(0001)面呈现台阶流生长模式,该晶体质量最优;温差为20 ℃时AlN晶体(0001)面呈现台阶簇生长模式,该晶体容易开裂。通过工艺优化最终获得了直径为40 mm AlN单晶衬底,完全满足器件制备需求。
物理气相传输 表面形貌 台阶流 AlN晶体 同质生长 physical vapor transport surface morphology step flow AlN crystal homogeneous growth 
人工晶体学报
2020, 49(11): 2200
Author Affiliations
Abstract
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China
2 Institute of Optoelectronics, Shenzhen University, Shenzhen 518060, China
3 Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
4 e-mail: rszheng@szu.edu.cn
This erratum corrects errors that appeared in Photon. Res.3, 38 (2015)PRHEIZ2327-912510.1364/PRJ.3.000038 related to the polarization of the experimental optical path and a few typos.
Photonics Research
2020, 8(3): 03000412
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 Sino-German College for Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518060, China
3 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
4 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
Supercontinuum generation (SC) of more than one octave spectrum spanning covering from 400 nm to 820 nm was achieved by pumping a piece of aluminum nitride (AIN) single crystal using a nanosecond 355 nm ultraviolet laser. The AlN with a thickness of 0.8 mm was grown by an optimized physical vapor transport technique and polished with solidification technology. Compared to previously reported ones, the achieved visible SC exhibited the broadest spectrum spanning from bulk materials pumped by a nanosecond pulse laser. The visible supercontinuum in AlN presents new opportunities for bulk material-based white light SC and may find more potential applications beyond typical applications in integrated semiconductive photoelectronic devices.
320.6629 Supercontinuum generation 190.2640 Stimulated scattering, modulation,etc. 190.4720 Optical nonlinearities of condensed matter 
Chinese Optics Letters
2018, 16(4): 043201
Author Affiliations
Abstract
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering,Sun Yat-Sen University, Guangzhou 510275, China
2 Institute of Optoelectronics, Shenzhen University, Shenzhen 518060, China
3 Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
The angle dependence of optical phonon modes of an AlN bulk single crystal from the m-plane (1100) and c-plane (0001) surfaces, respectively, is investigated by polarized Raman spectroscopy in a backscattering configuration at room temperature. Corresponding Raman selection rules are derived according to measured scattering geometries to illustrate the angle dependence. The angle-dependent intensities of phonon modes are discussed and compared to theoretical scattering intensities, yielding the Raman tensor elements of A1(TO), E22 , E1(TO), and A1(LO) phonon modes and the relative phase difference between the two complex elements of A1_TO_. Furthermore, the Raman tensor of wurtzite AlN is compared with that of wurtzite ZnO reported in previous work, revealing the intrinsic differences of lattice vibration dynamics between AlN and ZnO.
Semiconductor materials Semiconductor materials Scattering Scattering Raman Raman Scattering Scattering polarization polarization 
Photonics Research
2015, 3(2): 02000038

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!